


Overview

Project Summary

● Name: Teahouse Finance - TeaVaultV3Pair
● Version: commit 9873e75
● Platform: EVM-compatible chains
● Language: Solidity
● Repository:

○ https://github.com/TeahouseFinance/TeaVaultV3Pair
● Audit Range: See Appendix - 1

Project Dashboard
Application Summary

Name Teahouse Finance - TeaVaultV3Pair

Version v2

Type Solidity

Dates June 14 2023

Logs June 7 2023; June 14 2023

Vulnerability Summary

Total High-Severity issues 0

Total Medium-Severity issues 3

Total Low-Severity issues 2

Total informational issues 5

Total 10

Contact
E-mail: support@salusec.io

1

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/9873e75422d7596f88aa84971ca35573e0a0f4f2
https://github.com/TeahouseFinance/TeaVaultV3Pair


Risk Level Description

High Risk

The issue puts a large number of users’ sensitive

information at risk, or is reasonably likely to lead to

catastrophic impact for clients’ reputations or serious

financial implications for clients and users.

Medium Risk

The issue puts a subset of users’ sensitive

information at risk, would be detrimental to the client’s

reputation if exploited, or is reasonably likely to lead

to a moderate financial impact.

Low Risk

The risk is relatively small and could not be exploited

on a recurring basis, or is a risk that the client has

indicated is low impact in view of the client’s business

circumstances.

Informational
The issue does not pose an immediate risk, but is

relevant to security best practices or defense in

depth.

2



Content

Introduction 4
1.1 About SALUS 4
1.2 Audit Breakdown 4
1.3 Disclaimer 4

Findings 5
2.1 Summary of Findings 5
2.2 Notable Findings 6

1. Uniswap V3 pool may not be initialized for the tokens 6
2. feeConfig is not set during initialization 7
3. Centralization risk 8
4. Implementation contract could be initialized by everyone 9
5. The multicall function can be used to steal funds in the contract 10

2.3 Informational Findings 11
6. Users can inflate the share price by transferring tokens into the contract 11
7. Use of floating pragma 12
8. Inconsistent comments 13
9. Cache array length outside of loop 14
10. Initialize variables with default value 15

Appendix 16
Appendix 1 - Files in Scope 16

3



Introduction

1.1 About SALUS
At Salus Security, we are in the business of trust.

We are dedicated to tackling the toughest security challenges facing the industry today. By
building foundational trust in technology and infrastructure through security, we help clients
to lead their respective industries and unlock their full Web3 potential.

Our team of security experts employ industry-leading proof-of-concept (PoC) methodology
for demonstrating smart contract vulnerabilities, coupled with advanced red teaming
capabilities and a stereoscopic vulnerability detection service, to deliver comprehensive
security assessments that allow clients to stay ahead of the curve.

In addition to smart contract audits and red teaming, our Rapid Detection Service for smart
contracts aims to make security accessible to all. This high calibre, yet cost-efficient, security
tool has been designed to support a wide range of business needs including investment due
diligence, security and code quality assessments, and code optimisation.

We are reachable on Telegram (https://t.me/salusec), Twitter (https://twitter.com/salus_sec),
or Email (support@salusec.io).

1.2 Audit Breakdown
The objective was to evaluate the repository for security-related issues, code quality, and
adherence to specifications and best practices. Possible issues we looked for included (but
are not limited to):

● Risky external calls
● Integer overflow/underflow
● Transaction-ordering dependence
● Timestamp dependence
● Access control
● Call stack limits and mishandled exceptions
● Number rounding errors
● Centralization of power
● Logical oversights and denial of service
● Business logic specification
● Code clones, functionality duplication

1.3 Disclaimer
Note that this security audit is not designed to replace functional tests required before any
software release and does not give any warranties on finding all possible security issues with
the given smart contract(s) or blockchain software, i.e., the evaluation result does not
guarantee the nonexistence of any further findings of security issues.

4



Findings
2.1 Summary of Findings

ID Title Severity Category Status

1 Uniswap V3 pool may not be initialized for the
tokens

Medium Data Validation Resolved

2 feeConfig is not set during initialization Medium Business Logic Resolved

3 Centralization risk Medium Centralization Mitigated

4 Implementation contract could be initialized by
everyone

Low Business Logic Resolved

5 The multicall function can be used to steal funds
in the contract

Low Business Logic Resolved

6 Users can inflate the share price by transferring
tokens into the contract

Informational Business Logic Acknowledged

7 Use of floating pragma Informational Configuration Partially
Resolved

8 Inconsistent comments Informational Code Quality Resolved

9 Cache array length outside of loop Informational Gas
Optimization

Resolved

10 Initialize variables with default value Informational Gas
Optimization

Resolved

5



2.2 Notable Findings
Significant flaws that impact system confidentiality, integrity, or availability are listed below.

1. Uniswap V3 pool may not be initialized for the tokens

Severity: Medium Category: Data Validation

Target:
- contracts/TeaVaultV3Pair.sol

Description

The variable pool is initialized by calling factory.getPool() for tokens. However, there may be
a possibility that no pool exists in Uniswap v3 for tokens. In that case, the pool variable will
be assigned zero address and it won't be possible to modify it later.

contracts/TeaVaultV3Pair.sol:L84
pool = IUniswapV3Pool(factory.getPool(_token0, _token1, _feeTier));

Recommendation

Make sure that pool is not zero address and put a check to ensure that.

Status

This issue has been resolved by the team with commit f7797f9.

6

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


2. feeConfig is not set during initialization

Severity: Medium Category: Business Logic

Target:
- contracts/TeaVaultV3Pair.sol

Description

The state variable feeConfig is not set during initialization and it can only be set via
setFeeConfig function. If it is not set, users can deposit without paying entryFee or withdraw
without paying exitFee.

If the owner calls setFeeConfig function via a separate transaction, users can front-run that
transaction to avoid paying the fee.

Recommendation

Consider setting the feeConfig variable to an initial value within the initialize function.

Status

This issue has been resolved by the team with commit f7797f9.

7

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


3. Centralization risk

Severity: Medium Category: Centralization

Target:
- contracts/TeaVaultV3Pair.sol

Description

There are some privileged roles in the TeaVaultV3Pair contract.

The owner of the TeaVaultV3Pair contract can update the contract logic, change the fee
configuration and assign the manager. The manager controls funds within the
TeaVaultV3Pair contract through privileged functions.

Since there is no cap on fee configuration, if the owner's private key is compromised, an
attacker could set feeConfig.vault to an address he controls, set all fee configurations to the
maximum, and assign the manager to himself. If the privileged accounts are plain EOA
accounts, this can be worrisome and pose a risk to the other users.

Recommendation

Consider transferring the privileged roles to multi-sig accounts and setting a hard cap on fee
configuration.

Status

This issue has been mitigated by the team with commit f7797f9. The team has added a
comment to recommend using a multi-sig account for the owner and set the FEE_CAP
during initialization.

8

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


4. Implementation contract could be initialized by everyone

Severity: Low Category: Business Logic

Target:
- contracts/TeaVaultV3Pair.sol

Description

According to OpenZeppelin, the implementation contract should not be left uninitialized.

An uninitialized implementation contract can be taken over by an attacker, which may
impact the proxy. There is nothing preventing the attacker from calling the initialize()
function in TeaVaultV3Pair’s implementation contract.

Recommendation

To prevent the implementation contract from being used, consider invoking the
_disableInitializers function in the constructor of the TeaVaultV3Pair contract to automatically
lock it when it is deployed.

Status

This issue has been resolved by the team with commit f7797f9.

9

https://docs.openzeppelin.com/upgrades-plugins/1.x/writing-upgradeable#initializing_the_implementation_contract
https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


5. The multicall function can be used to steal funds in the
contract

Severity: Low Category: Business Logic

Target:
- contracts/TeaVaultV3PairHelper.sol

Description

There is a refund of ETH and vault-related tokens at the end of the multicall function. If
TeaVaultV3PairHelper has surplus tokens, not only the owner can withdraw them using
rescueFund(), users can also withdraw them using multicall().

Recommendation

Consider adding a note about this issue to the comments and documentation.

Status

This issue has been resolved by the team with commit f7797f9. The team has added a
notice to remind users not to transfer tokens to the contract.

10

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


2.3 Informational Findings

6. Users can inflate the share price by transferring tokens into the
contract

Severity: Informational Category: Business Logic

Target:
- contracts/TeaVaultV3Pair.sol

Description

The amount of tokens that users need to deposit is based on the balance of the contract and
how many shares they want to mint. Thus, if someone directly transfers some tokens to the
contract, the share price may be inflated.

Take the first depositor as an example. The first depositor can deposit a very minimal
amount of tokens, such as 1 wei, followed by sending a large amount of funds directly to the
contract. This inflates the share price, so subsequent depositors must put in larger deposits.

Recommendation

Consider adding a note to the comments and documentation.

Status

This issue has been acknowledged by the team.

11



7. Use of floating pragma

Severity: Informational Category: Configuration

Target:
- All

Description

pragma solidity ^0.8.0;

The TeaVaultV3Pair contracts use a floating compiler version ^0.8.0.

Using a floating pragma is discouraged, as code may compile to different bytecodes with
different compiler versions. Use a locked pragma statement to get a deterministic bytecode.
Also use the latest Solidity version to get all the compiler features, bug fixes and
optimizations.

Recommendation

It is recommended to use a locked Solidity version throughout the project. It is also
recommended to use the most stable and up-to-date version.

Status

This issue has been partially resolved by the team with commit f7797f9. The team does not
lock the pragma version in ITeaVaultV3Pair.sol, ITeaVaultV3PairHelper.sol and VaultUtils.sol.

12

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


8. Inconsistent comments

Severity: Informational Category: Code Quality

Target:
- contracts/interface/ITeaVaultV3Pair.sol

Description

This comment is copied from the above getToken0Balance function but forgot to change
token0 to token1.

contracts/interface/ITeaVaultV3Pair.sol:L72-L74
/// @notice get vault balance of token0
/// @return amount vault balance of token0
function getToken1Balance() external view returns (uint256 amount);

Recommendation

Consider fixing the mismatch between comments and implementations.

Status

This issue has been resolved by the team with commit f7797f9.

13

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


9. Cache array length outside of loop

Severity: Informational Category: Gas Optimization

Target:
- contracts/TeaVaultPair.sol

Description

contracts/TeaVaultV3Pair.sol: L607
for (uint256 i = 0; i < positions.length; i++)

contracts/TeaVaultV3Pair.sol: L621
for (uint256 i = 0; i < positions.length; i++)

contracts/TeaVaultV3Pair.sol: L632
for (uint256 i = 0; i < positions.length; i++)

The solidity compiler will always read the length of the array from storage during each
iteration. The length of the array can be cached in a local variable to save gas.

Recommendation

Consider caching the length of the array in a local variable stored on the stack.

Status

This issue has been resolved by the team with commit f7797f9.

14

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


10. Initialize variables with default value

Severity: Informational Category: Gas Optimization

Target:
- contracts/TeaVaultPair.sol

Description

contracts/TeaVaultPair.sol:L200
for (uint256 i = 0; i < positionLength; i++)

contracts/TeaVaultPair.sol:L225-226
uint256 entryFeeAmount0 = 0;

uint256 entryFeeAmount1 = 0;

contracts/TeaVaultPair.sol:L263
uint256 exitFeeAmount = 0;

contracts/TeaVaultPair.sol:L367
for (uint256 i = 0; i < positionLength; i++)

contracts/TeaVaultPair.sol:L399
for (uint256 i = 0; i < positionLength; i++)

contracts/TeaVaultPair.sol:L426
for (uint256 i = 0; i < positionLength; i++)

contracts/TeaVaultPair.sol:L595
for (uint256 i = 0; i < data.length; i++)

contracts/TeaVaultPair.sol:L607
for (uint256 i = 0; i < positions.length; i++)

contracts/TeaVaultPair.sol:L632
for (uint256 i = 0; i < positions.length; i++)

There are some variables that are initialized with a default value of 0, which consumes extra
gas.

Recommendation

Consider optimizing gas consumption by avoiding unnecessary initialization of variables.

Status

This issue has been resolved by the team with commit f7797f9.

15

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/f7797f9f6266f847aa997641cd0f7601b9ee54e3


Appendix
Appendix 1 - Files in Scope
This audit covered the following files in commit 9873e75:

File SHA-1 hash

contracts/TeaVaultV3Pair.sol 1880bd0aaf5488dd9584f2f06cadfd3751f99844

contracts/library/GenericRouter1Inch.sol e3809f66efa8380906f8b0213fdd148f5887794a

contracts/library/VaultUtils.sol 1354ca7f5091b046fb0bbddabad15f9093fa980d

contracts/TeaVaultV3PairHelper.sol 1ec4a2e015ba1351d13403903460373c83f3375e

contracts/interface/IGenericRouter1Inch.sol b694e28df1714db5e00de250a559336a94947d73

contracts/interface/IWETH9.sol 9a023de828c44e27c52a9506d8f850fdabde9d97

contracts/interface/ITeaVaultV3Pair.sol 6839fab6d3f369505a12c4328b4a54cf42216cb9

contracts/interface/ITeaVaultV3PairHelper.sol 309b5878ce2ee74eac2e0815d1b91656a88cb1e3

16

https://github.com/TeahouseFinance/TeaVaultV3Pair/commit/9873e75422d7596f88aa84971ca35573e0a0f4f2

